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BURGERSAPPROXI_LqT_ONFOR TWO-DD4SN$[ONAL

FLOWPAST AN ELLIPSe.

8y

J. Mark Dorrepaal*

ZNTRODUCTION

Efforts during Chi_-phase of the research ha.re concentrated on analyz-

ing the Burgers flO_ past a circular cylinder, comparing predictions of the

Burgers model with those of Oseen flow past a circle, and deriving e_acC

solutions of the-flow eq.uations-for, elliptic geometries. The cesults are

prov.tded in the following sections of this r_port. The first section fol-

lowing the List of Symbols describes a motivation-for, studying Burgers flow.

Then "Sol_£16n[' outlines a solution technique which works equally well for _I

Oseen or Burgers flow past a circular cylinder.- This is followed-by sec T

C£ons which describe the separaClon, behlnd the cylinderD the drag experi-

enced by the cylinder, and asymptotic behavior far from the cylinder. The

section titled "Burgers Flow and Oseen Flow: How Do They Differ?" shows

that the predictions of Burgers flow near the cylinder provide a substantial

improvement over those of Oseen flo_ Finally, "Burgers Flow Past an E1-
t

M liptic CylindeC" gives the formulation and solution of the equations of
motion f ,r flow past: an ellipse.

LIST OF SYMBOLSmm

a cylinder radius
m

-i A(6) coefficient in least squares fit

CD drag coe_flcient

En coefficient in vorCicity expansion

i e| e

*Associate Pro_essorD Department of Mathematical Sciences, Old Dominion
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P

Fu(r) radial etsenfuucCiou reaulCinS from separation of ,1

variables !!-a2) modified.achi .  ..ctlo.4

G(r,e ;ra,e o) Green's _uncCion

k unit vecCo= in m-direction

'_ gn(X) modified Bessel function

p(r,e) pressure

P rear atasnation, peiat of the cylinder

(r.O) polar coordinates

g Reyuoldsnumber

gc Critical minln_ Reynolds amber

gs Reynolds n_nber baaed on the semi_ajor axis of the
ellipse

se.(O . 1 R2 ) _tathieu function " !I' 6

Tn(O) angglar eigenfunction resulting from separation ofvariables

U free-sCream velocity

+
v fluid velocity

(x,y) Cartellan coordinates

a Reynolds number exponent in least squares flt

Fkn coefficient in infinite liflear system of equations

6kj Kroaeckar delta

6(X) delta function

gradient operator

V2 Laplacian operator

(_n) elliptic coordinates for flow parallel to major axis

(_,A) elliptic coordinates for flow perpendicular to major
axis

2
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v kt.nL_uat:tcvi_ooaity

p _lulddenelcy

arrea_ stress oo_pouen_s it

(r,e I h_rmonic conjusate of potontial flow stream function i

0k(R) coefficient of hisl_er order term in asymptotic
expansion of scream function _I

X(R) coefficient of second term in uy_pCotic expansion of _
streA_ function '._

_j

X(_,X) stream._uuction fvr petqntial.flow past an ellipse
gerpena_,cu_ar co _ts ma3or ax_s

_.(.r,e) stream function for Oseen or BurserS flow past a circle

({,_) stream function for aursers flow past an ellipse

V(_,vl) scream function lot poCe_Cia£-flow past An ellipse
par__allel Co its ma3er ax_s

m (r,e) vorticity

I_0TIVATZ0N

The nondimensfonal Navier-SCokes equation has t_e _n_m

where R, v, p are Reynolds number, fluid velocity, and pressure,

respectively. The velocity vector _sC also satisfy the continuity

equation

4,
• v - 0 (2)

which iS guaranteed tf we use the following representation:

v = curl(_(r,O)k) (3)

3

....... , ................ _ _ ".............. ...:..,:_:--:. ,, ,_-_-...;_ ...... _._:.w_,,_,,._,_,i_r:_,'.L_.._.-_,_.__.£_.,_7,,_T_=&_q_:___
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where _(r,e) te the screen function. By aubucicuctn8 equation (3) into

equation (t) and elim_latin8 p(r,0), we can wr&ce the Navier-SCokes eque-

: cien in the equivalent scalar form

i! [,2 • ._ _)(,_.1_ .Or . (:"_)

where

t
fmamm 4m _mm

_r OO _O _r

This suggests a_ iterative process
i

• - (6)
V2 _k k

k " O,1,2D.._.

Iv 2 �E--D(*k)]_%+l" 0 (7)r ,

which defines a sequence (_k(r,e)} o_ spatially uniform al_proxlmaCions Co "

the 8slutiSh of e_uacion (1). It is assumed that under appropriate _ondi-

clone this cequen¢ ill conver_e to the solution of equation (1).

= To besin the iterations we must propose initial values of wo(r,O)

and _o(r_G) consistent with equaClon (5). Since we are considerins

D uniform flow past a circular cylinder r = 1, the flow is irrotational at

-_: infinity and it is reasonable to choose _o(r,O) -= O. If we choose to =

r sin 6, corresponding to a uniform stream0 the problem for (_1 D _1) is

Oseen flow. On the ocher hand, if we choose _o " (r - r "l) sin 9, corres-

_ pondi_s to continuous inviscid flow past the cylinder, the resultinS problem

for (_1, _1 ) is Bursers flow. Both flows should behave similarly at inf i-

ally. But in Oseen flow vorticity idl convected through the cylinder eh_le"

i in Bursers flo_ it _s convected around the cylinder. This sus_ests a

I; difference in the two flows the circle.
near
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8OLUT_ON

W_Chk J 0 and _o " r stn _ aoua_on (7) bacomo8 che Osaen vorCic_Cy

equ;_t:i_nz

[ 92 ' ltstn'_O _-- " It C°'O L] _(r'e) "Or ,e ,r (8)

The Burgers verCiatcy equation has Che form

Both solutions are of the form

D

W

_(roe)=-e *(r'e) _ _ Fn(r) T(e) (lo)
n=1 n

where E are cousCanCs Co be determined and _, F D T are given inn n
fn Cable 1.

Table 1. funcC_ons occurring in vorticicy expression.

Method _ (rt6) Fn(r) T.(9)

2
B=rser,Roo,h=oo,e _ek_(=.-_R2) °%(e.-_R2) ,-l_r

i i

1982010666-TSA09



The _un_Clous _i_u and aeu _r_ Msthiou _u,_tlona,ths l_ormor bshav_n8
asymptotically _e _xp (-It ¢oah s) aa s - ln-r._*-_-% ghe l#t_er beLn_ odd _,

and periodic in 0 wf.eh period 2. !;]' ij

Th_ egr_m _uncg_ eorrespondins go w(r,O) _;_s_io8 Cha Poisson _

equation (6) and tho boundery cond_Cione l

• ,(z,s) _ (z,0) - o (zz) l
ar ,._

'/

& Oreen'8 _unction defined by

L _
Va G(r,e;ro,e o)--_.6 (r - ro) 6(e -%) (12) f

O(r,O;1,e o) " 0 (13) _'_''I

is used to solve _or O(r,e) with the result: :i
i
i-i

"to.1 [_ I_(ro,e o) - (r o - )ein eo +.f _(r,O) "

:i

• G(r,_;ro, Oo)r dr dO (14) _,

Where

_r z +r_-zr_ o_o_ (_" 0o) ]G(r_O;ro,e O) " - l_..ln ,,

_ L<;'o)_" _" _"_ooo.(_- %)J
To obtain the ooef£1cien_s E in equation (10)_ we invoke the no-slip

n

condition _n equation (1_):

o - _ (z,0o)- z ._. eo.f "_ro fz _(r,O)

_G
"-" (r,O;1,O) r dr dO (1_)
_r 0 _

0

6

!:.

• i
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80

_xpand_ns _ Ln_ Fourier nino norioo in OQ and oqu4cins the s:'_nultin8 !!
_|

coe_EicienC_o_ sin kO (k - 1_2,3_...) on the _ishC side o_ eq,eCie_ (15) ii

• ',, 0 iCo sorop wo obtain an tnfinICo linear oys_mu o_ Cho fom i'

n_= En " k " 1,2,3,... (16) .
l rkr_ _kl

where

u _o--*_"_.o **_.*"'*°°'_,o(*-_).*oo'
#1

i • sin k9 dr dO (Oeeen)

' -_ J"I"._'-_""-'°°'h"°°'_oo,.n(..-s_,)I rkn _ o o 4

If aquaCion (16) is truncated at k = n - 8, sood results are obtained for

Reynolds numbers in the range O < R _ 4.

SEPARATION

Both Oseen and Bucsers flows exhibit separation on the downstream side

of the cylinder provided the Reynolds number exceeds some critical mfnimum

Rc. This value is found by solvln 8 the equation

8_
1 (l,O;a c) - 0 (17)
89

Yamada (reg. l) has shown that Rc , 1.51 for Oseen _low and our calcula-

tions verify this result. For Bursers flow we find Rc = 1.12. A humeri-

1982010666-TSA11





D_

A circular cylinder lu _ u.ifo_m _crom oxp_rionQoi a fo_Qo in the !

diro¢l:tdn of th_ flow Qr._l_nftntCy. ThQ Ii_llni_lJdQ O_ I;h_.i _01?QQ ii obCii_11Qd 'i

by anl:eSraCLnit I_ho coll_ononl: Of I:ho ICtOS{ VOCl:Ol_l_ thQ dirocl:ion of Cho ii
unJ,form e_toam about l:ho c_rcum_QtQncQof...ChQC_tO_Q. The drgg tl Choroforo '

}

-_ err cos O - arO sin dO (181 (

vhere art, arO axe the stress components and 1_, vj U are flu£d ,_i
'l

density, kinenmfJ._ vLs_s_Cy, and f_ee-stre_ velocity, rospeQtLv_ly. The ........

stress components can be calculated from equation (14) with the result i

• • sen e - sine de (19)
o

The drag coefficient is defined Co be

D
CD - (20)u a)

where a is cylinder radius. Table 2 provides drag eoefficients as compuC-

ed from equation (19) for Reynolds numbers i_ the range 1 ¢ R ¢ 2.

Table 2. Drag coefficients for 1 _ R ¢ 2.

i ii i i iii i

R

1.0 1.12 1.25 1.50 2.0
m m _ mmamlmmm. *amlmlnm,_

CD 7.76 7.29 6.86 6.22 5.35
m i

9
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_ieso v4tuoo a_roo welt wlCh Cho oxpari,[r_nco o1_Trier, on (s_o rot_o. 3 and 4).

Table 2 will bO _xp_nded lhortly _o Inc_,tdo R_ynoldonumborm in the range

I _ g _ # and drag __oofflo_ongs_,r ,t_ip_i_ _ytindcrs, _I
.... il

ASY_TOTI(_ VOP_..OILJ_,OW-_AKFRO]_CYGtNDI_d
I

The ,slutiSh of the full Navier-$tokos equation pasc.a ._nite obstacle

predicts a boundary layer surcoundins the obstacle in which the lime is

rotations1 and the velocity sradienCs are Larse. OuCh{de this boundary

layer the flc_ i_ essentially icroCattoncl. HaChematically this means the

stream lunches outside the boundary layer in harmonY. Since Oseen flow

and Bur_ers _c_. are spaC£alty uniform linear models o£ a lqavler-SCokes

_low, we would expect them both Co exhibit thin behavior.

1_ the Or_en_s function O(r'e;ro'eo ) Ln equation (14) Is e_.pat_)_d in /,,
a Foc_riar series, the coeggicients og cos ke (k - 1,2, ...) ',t_,v_,_._h_ Leav-

;J

in_ the stream gunctiori in the gollovin_ germ: "

m r

+<%,no) .-_l _.i _ f, o _-__r k I _ r° sin k6 o f r _(r,O) sin k9 dr dOo X

m r
l+k

+t=_ Z_ro'kSl. kOo f" f °r _(r,O)
k'l k o I

• sin ke dr dO (21)

m

ThJ.s expression can in turn be written

r° _(r,9) sin e dr dO �l1 /,/_ .5g 0

ropE) 0 r 0 ......
_( ) " nit, _o " 81n eo .... -I

--+ r o

i{i! (22)
(cont*d)

;! ,o
_.," " .................... ':: :........._:::::: ""-:":!/::_:_:/:/:::-::_i_.)=i__!_=.:'_:!+:_"':=i+':_:_"......._;+2-_;, ................=: : ::+ :":+_ +'-
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r

,_ o rl-k
[I _(r,Q) rain kO dr de

---_ _ l-sink0o

km2 k ro-k

r l,_r / o r _(r,e) sin ke dr d6

�..1_ __.s_n_ke ° ) 1
i

1..-k=l k r k

o (22)
(cone l'd)

_he-three expressions in brackets in equat£on (22) all have finite limits as

r 0 �m.Takin8 this limit, therefore, will yield the second term.in the

asymptotic exp.a_._sion bf the scream £unction far from the cylinder. The

result is

m

. I X(R) _ _Isin keo + 0(I--) (23)O(ro,e o) ~ r° sin e° _ k=l k ro

How it is known that

!sinke ° • I_(. -e o) 0 <e o <. (24)kml k 2

1
) -. < eo < o (25)= _ (-. - eo

2

Thus the stream function has the asymptotic form

_(ro,e o)~ r° sine o -lX(R) I - + O(r ° ) (26)2

with the plus sisn being taken if 0 < e o < Iv end the minus sisn if -7 <

:- 9 < O. The second term in equation (2b) can be made analytic alons e • _,
_- o o

but suffers a jump discontinuity across Oo - O.

i.
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1

Rxpnnelons o_ the scream _Lkn_.t;_onfdr 0o " 0 and r o _inite reveal

no discontinuity, however, The discontinuity in equation (25) tn a property

of the asymptotic expansion of _(¢o, 0o), but no_ _ _ha stream

function ltselg,

This rather strange behavior can be explained. From eq.atiOn (I0) the

voretctcy can be shown co behave asymptotically tik_ ........

-1/2 Itr (l- cos O)
w(r,O) ~ • . . _. .. f(6) as r (27)

where f(O) m O, f'(O) ¢ O. Thus the vorC/c/ty decays exponentially as

r provided 9 _ 0. Along O = 0, however, we have m(r,O) - 0 for all r

and Or,O)- 0 r +" .ue Or,e)dec.e.lgebraicallyalong
e

O. If r L >> 1, the function _ (L,O) _ill be exponentially small as__.
m

O �O,but will Jump to a much larSer value when 9 - 0 since its decay alone__

this ray is so much-slower. This beh&v.ior_ is not uolike a delta function,

and, since the stream function is rolated to the vorticley through PoLsoon's

equatlonD it is not surprising that a seep function behavior appears in the

asymptotic expansion of _(r,O) along e - 0.. lC must be stressed, however,

that this is a feature of the asympcocics only. The stream function itself

is analytic in the fluid domain.

The next term in equation (23) can be calculated and is of the form

01(R)r-1 sln 6o. In fact, all subsequent terms are of the form @k(R)ro k
sin ke: ,...(k - 1,2,3 ). The asymptotic expansion of the stream function

is therefore harmonic (except possibly along Oo - 0) and gives us the

potential floe far from the cylinder. Table 3 contains some computed exam-

pies.

BURGERS FLOWAND OSEEN FLOW: HOWDO THEY DIFFER?

The previous section shows Chat one distinct advantage of a spatially

uniform linear approximation to the Navtet_-Stoked solution is the abi' ity to

_ calculate from it the resulting potential flow at infinity. This potential

12

_'..:......-:_:;-::;:'"_._ :__._*..._ :.,_._*-_.L" .....,,:_-_-:.-..7_-:_._,_._ _i:i_i!-:i_!_-_-:._!_:_-_i!_-_-,_---_.i_:_= - - --...... _; __ ---_.-'_:-_.-=,__
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fl_W cannot be obtained a priori without some knovledBe of the flow near the

eylinder because the flow near the cylinder determines the outer edBe of the

boundary layer0 which in turn defines the re_lion of irrotational flow,

Without an approximation like Ocean flow or l_ueEera flew, therefore, the

problem of finding _(r,O) far from the cylinder redueee to finding a harmo-

nic function in a region whose boundary is unknown,

Having obtained the asymptotic expansion Biven Ln the previous section,

howeOer, tt is possible to define She location of the outer edge of she

boundary layer as the curve along which this asymptotic expansion vanishes.

This amounts to finding a boundary which the potential flow does not pene-

trate. Slippage along this boundary is, o£ courae, permitted. The boundary

so defined determines the displacement body which the potential flow far

from the cylinder "sees" The-displacement body includes the cylinder, its

, wake, and the boundary layer surrounding the cylinder.

By setting She asymptotic expansions given in table 3 equal Co zero and

ao.tv_m8 foc r, _..can obtaio_ approximar.ions Co_-the displacement bodies for ,: -

the wsriouz flora. A typical example is.given in figure 6. Note Chat the

displacement body is semi-infinite with its thickness at infinity being

twice the value of the (±1- _)- coefficient. Since the cylinder boundary

is given by r = 1, the thickness of the boundary layer is easily calculated.

Tables &-and 5 compile these results for a variety o5 Reynolds numbers and

locations, along the cylinder boundary. Note that 9 - _ refers to the got-

ward stagnation point on the cylinder boundary,

The last column in tables 4 and 5 is a least-_quares fit of the data

given in each row. In table 4 the value of a depends on 9. In table 5,

however,_the value of a hovers about oo • 1/2 regardless of 9. This

suggests that the boundary layer thickness is inversely proportional to R1/2

in Burgers flow but not: in Oseen flow.

Studies of the nonlinear boundary layer flow past a semi-inflnite flat

plate show unquestionably that the boundary layer thickness behaves like

lr"1/2. Our work obtains a similar result for a bluff body using a linear

model in which vortlclty is converted around the obsCacleOs boundary. The

agreement between this pred',tion of Burgers _lot_ and that of nonlinear

analysis regarding boundary layer behavior indicates that the Burgers model

14
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Table 4. 9Oundar¥ layer Ci;t_knoeof 0aeon _low.

"'_ _mmm_m _ ~

0

---- _ x. 4.0 _. _.o A(o)/xa

n - 0.3._ 0.2360 0.1691 0.1254 O. 7984/g1.1336
_, II

_-w 0.354g 0.2427 0.1750 0.130810 O.8038/.q,; • ZZ2?

_'w 0.3904 0.2637 0.1935 0.1478 0. d2301Rl.0$kS• 9

• I"_ 'w 0.4363 0.3014 0.2270 0.1784 O. 8047/R0.9 721

4

_Tr 0.5086 0,3510 0.2,790 0.2267 0. 9415/R0.8798m 7

12 0.5185 0.4515 0.3597 0.3001 1.0705/1{0.7605

i _ e O. 7858 O. 5895 0.4818 0.4121 1. 2795/R0.70_

_"_t 1.0483 0.8066 0.6763 0.5887 1.5182/gO.6SO2
=_'

- 4
1"2"n- 1.4840 I. 1688 O. 9962 0.6845 2.1875/RO.S65_

I"_ _ 2.2783 1.8334 1.5892 1.4314 3.2260/_10.50032
I"2"_t 3. 9903 3.2763 2. 8834 2.5288 5.4491/R0._ S6S

_ _'_t 9.4140 7.8764 7.0282 6.4777 12.4377/R0.;091



7
Table 5. lloundary_ayer thickneae| Burgerm flow.

8 R " 2.0 R " 2. t_28 R " 3.464 R " 4.0 A(0)/R ammmmm i Ill.

_' Tr 0.5741 0.4823 0./,407 0.4103 0.8005/P.0 .W825

11
_._ 0.5808 0.4878 0.445/, n;/,147 0.8108/p.0 •we_l

10
T_-_' ..- 0.6018 0.5045 0.4603 0.4283__ 0.84271P.0._e86
9
1"2"'n: 0.6394 O.5347 0.4870 0.4527 O.9001/R0._962

8
l'_It 0.6988 0.5823 0.5291 0./,912 0.9911/B.0"$069
7
1"2"_ 0. 7891 0. 6545 0. 5930 0. 5494 1. 1297/I_L0.5205
6
i---_It 0.9269 0.?646 0.6902 0.6381 1.3422/R0. 5368

5
_-_ 1.1444 0.9385 0.8437 0.7780 1.67-86/R0. $552

4
_'_-- 1.510i 1.2314 I.-1023 1.0138 2.2435/R0. 573_

3
_-_ 2.1901 1.7797 1.5878 1.4569 3.2853/_L0.5867

2
_'_ 3.6943 3.0067 2.6809 2.4587 5.5407/R 0.5858
1
1-__ 8.5786 7.0497 6.3159 5.8136 12.6387/R0.5598

i i

16
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|

Ls a subsCanclal improvement over the Oseen model in describlns Che flow

near che cylinder.

BURGEKS_ PAST AN ELLZPTICCYLZNDEIt

We consider fiesC the case ehen-Che-maJor axis of the ellipse is

, parallel co the-uniform scream ac infinity. The appropriaCe coordinaCe

system is (_,_ _here

_-= cosh _ cos n

y = sinh _ sin n (28)

The curve _ = _o represents a_ ellipse with major axis 2 cosh _o alon$

the x-axis artcLmlnor axlJ 2 sinh _o. The continuous Luviscid potential
floW which gives Che convecCive velocity field satisfies the boundary value

__oblem

2_'_-"-0 _ > _o' "_ < n <

V(_o,n) • 0

,t,,., y,,.._.e sinn as _ + +® (29)

The solution of equation (29) is

v({,n) = e o sinh (_ -_o ) sin n (30)

If _(_,n) is the scream fUncClon for Burgers flow paso an ellipse,

che boundary value problem for _ is defined as follows:

I )1---. 9, _¥ ___) - __¥ _.__ o)({,n) - 0 (31)
_[2 8n2 8n an _{

17
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- (Co,n)- 0

..--e alnn as _ �´�(33)
2

The parameter a in equation (31) is proportional to the Reynolds number.

Its value is

R E

x - • (34) :

,- cosh _0

where Re is the ReynOlds number based On the eemimajor axis of the el-m

," llpse. In the limit _o the ellipse degenerates to a finite flat

_' plate. Since the potential flow parallel to a flat plate is a uniform

_: stream, Burgers flow and Oseen flow are equivalent when _o " 0.

:_ A_ iu__he-cas_._fi-the circle, the vorticity gunction has the form :

m(_,n) " -e2 Z E Fn(¢) T (n) (35)
i ' n-1 n n

_: where _(_,fi) - e cosh (_ - Co) cos _ is the harmonic conjugate of ¥(_,_).

i_ The resulting ordinary di_ferential equations for F (C) and T (_) are 1

. . !
different versions of Hathieu_s equation with solutions given by

'j

1

i

Tn(n) "'en( n' " 1-"P'216e2C°l (3_)

18
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!),,

Z_ we mke (he followln_ _ubstICuclons In equaclon. (35) a_Id (36) s

I - _ - Co, 0 ran, G ''_R e_° (37)2

the BarBers vorciciCy .p_o__an ell{pso has exactly the same form as chac past

a circle: namely,

n-1 ,-_c .en , _c (_8)

POieeon'e equation [eq. (32)] becomes

+ _2_.. -I h(z,e) _(z,e) (59)
az2 8e2 2

q

<

where

h(z,9) = cosh 2(z�_ ) - cos 29 (40)
0

and its solution follows the technique described under "SoluCi6u." Omitting

the details we find

f _ m
_(Zo,eo). o einhz ° sine ° + I j, ]'h(z,e)2 "_ o

• _(z,O) C(z,e;Zo,e o) dz dO (41)

where

[cosh (. cos (O Oo)17°'i i,o,j<' '0) oo.<0
!

The coefficients En in equation (3_) satisfy the infinite linear system
i

19
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• Gekn/z_" _-02/4 Bin kO SQn/O m - ]'02/dz.-d04 (43)

If the ellipse has-Ats major axis perpendicular to the flow at

Infinityj a different coordinate syste_ is required. Consider the elliptic

coordinates (_,X) defined by

x = sinh _ cos._

y - cosh _ sin _ (44)

The curve . " "o represents an ellipse with major axis along the y-axis.

The potential glow past this ellipse has etre_nn £unCtion X(_) which

satisfies exactly those conditions given in equation (29). Thus from

equation (30) we have

U

X(,,).) - e o sinh (U -,o ) sin _. (45) i

Since the potential _lows in equations (30) and (45) are functionally the
I

sme, it follows that the Bursers solution in (.,_) coordinates will be
;!

similar to that in (_,rl) coordinates. In fact_ i£ the variables (Um_.,X) I..,_

are replaced by ({,rI_¥). the problem is identical with that in equations

(31) to (33)_ except that equation (32) Is replaced by

V2_ _ einh2_ + COS2rt _2 9_12J

. 20
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i

_C _ollow_ ChnCche sCre_ _.nccton for ]}.raer_ _low paso an ellipse whome i_

_Jor 4x_,a is perpenOi_.lar Co the /_Lowi_ e_Lvenby equa_iOns (41) Co (43) i!

where h(ztO) i_mnow a_v_n by! !
,i

h(m_O) . _oeh 2(_ �_) �cos20 (47) -!
0

The research ChaC remains Co be done J.ncludos a detailed emnlysis of :_
,I

the eltipcical solu_.ions. T_ is up] intention co compu_ce dram coefficiencs

for various ell_pCical cylinders, examine separation phenomena, arid calcu-

late surface p.ressure discrtbuCions. The aepapCoCic form of the scream

function rill be used Co deduce displacement body shape and boundary Layer

chickness £or various cases. The special cases o£ Che fl_-paso a _iniCe

flaC place (both parallel to and perpendicular Co the un".form scream) will :_

b_ _onsidered in detail and compared with experlme._cal data where possible.

21
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Figure 1. Figure 2.
Streamlines at the roar stagnation 8treamlinoQ after ooparatiOn
point P of thQ c_llndor prior to
separation
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Figure 3. Figure 4.
Convective velocitF field at the Convective velocity field in Burgers
rear stagnation point of the flow
cylinder in Oseen flow

!..

|_

i 23 ,

1982010666-TSB13



==

IIH i ,,

D

r

f:

Figure 6.
D¢splacement body for Burgers flow at R=2.O
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